COLIN HOWSON

THE LOGIC OF BAYESIAN PROBABILITY

For the last eighty or so years it has been generally accepted that the theory of
Bayesian probability is a theory of partial belief subject to rationality constraints.
There is also a virtual consensus that both the measure of belief and the constraints
to which it is subject can only be provided via utility theory. It is easy to see why
this should be so. The underlying idea, accepted initially by both de Finetti and
Ramsey in their seminal papers ([1964] and [1931] respectively, though the paper
1964, first published in 1937, built on earlier work), but going back at least as
far as Bayes” Memoir [1763], is that an agent’s degree of belief in or uncertainty
about a proposition A can be assessed by their rate of substitution of a quantity
of value for a conditional benefit [S if A is true, O if not]. The natural medium
of value is, of course, money, but the obvious difficulties with sensitivity to loss
and the consequent diminishing marginal value of money seem to lead, apparently
inexorably, to the need to develop this idea within an explicit theory of utility.
This was first done only in this century, by Ramsey [1931]; today it is customary
to follow Savage [1954] and show that suitable axioms for preference determine
a reflexive and transitive ordering ‘at least as probable as’ and thence, given a
further assumption about how finely the state space can be partitioned, a unique
probability function.

The results of these various endeavours have all the hallmarks of a vigorously
progressing research-programme. For all that, I do not myself think that it is the
right way to provide a foundation for epistemic probability. I believe that the cur-
rent state of utility theory itself is far from satisfactory, but underlying that concern
is the feeling that one should not need a general theory of rational preference in or-
der to talk sensibly about estimates of uncertainty and the laws these should obey.
These estimates are intellectual judgments, and they are constrained by rules of
consistency. In support of this view is an elementary mathematical fact seldom
highlighted but of much significance. The probability of a proposition A is the
expected value of its indicator function, that is the function defined on the space
of relevant possibilities which takes the value 1 on those possible states of affairs
that make A true, and O on the others. In other words, probability is expected
truth-value. Truth and its logical neighbourhood are surely the right focus, not
rationality (whatever that is).

These considerations suggest a view of mathematical uncertainty well-
represented if not prominent among the seventeenth and eighteenth century pio-
neers, which is that the laws of epistemic probability are, in Leibniz’s words, ‘une
nouvelle espéce de logique’! . And James Bernoulli, in the Ars Conjectandi, talked
of measuring the probability of an uncertain proposition A in terms of the number
of ‘proofs’ of A relative to the number of ‘proofs’ of not-A. The sort of logical

1¢] have more than once said that we should have a new kind of logic which would treat degrees of
probability’ (New Essays, bk. IV, ch. XVI).
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analysis of probability proposed by Leibniz and Bernoulli was never properly de-
veloped, however. In retrospect it is easy to see the factors that hindered it: firstly,
rapid technical development, and exploration of the problem-solving power of the
mathematical theory, were primary, relegating ‘philosophical’ investigation to a
relatively low-priority task; secondly, a satisfactory theory of deductive logic did
not arrive until the beginning of the twentieth century; thirdly, probability became
a puzzlingly equivocal notion, with two seemingly quite different aspects. These
S-D. Poisson [1823] labelled respectively chance, signifying a property of events
generated by repeatable random devices, measured by long-run frequencies (this is
more or less Carnap’s probabilitys), and probabilité, signifying warranted degree
of certainty relative to an agent’s knowledge-state (cf. Carnap’s probability ).

The list of factors is not complete. Possibly the most influential, and one
that seemed to many to prove decisive, was a principle additional to the standard
probability axioms which was regarded as indispensable for actually determining
probability-values. The principle is usually known now by the name Keynes (an
advocate of it) gave it: the Principle of Indifference. Enough has been written
about the difficulties and paradoxes attending the use of this principle (see, for ex-
ample, [Howson and Urbach, 1993, Ch. 4] to make it unnecessary to undertake
another long discussion here. But the connection between the principle and the
logical programme is intimate, and when stated in the context of modern seman-
tics it is very plausible. Ironically, therefore, it is also in such a setting that the
basic problem with the principle is most easily identified and its gravity appre-
ciated. Thus, suppose that a sentence B admits n models distinct up to isomor-
phism, in 7 of which A is also true. Then it seems obvious that there is a logical
interpretation of a conditional probability P(A|B) evaluated according to the rule:
P(A|B) = r/n.? Such an interpretation is practically explicit in Bolzano [1850,
Sec 66 et seq.], and fully explicit a century later in Carnap [1950], for whom this
function (denoted by c!) explicated formally the idea of a partial entailment of
A by B, measured by the proportion of B’s models which are also models of A
(though Carnap abandoned this measure almost immediately because of its inabil-
ity to deliver a type of induction by enumeration; see [Howson and Urbach, 1993,
Ch. 4].

Of course, there is a problem when B does not admit only finitely many mod-
els. In such cases it may still nevertheless be possible to exploit a ‘natural’ metric
structure, such as when the possibilities are parametrizable by real numbers in a
compact interval (such a structure was famously exploited by Bayes when he de-
rived a conditional, ‘posterior’, probability distribution for a binomial parameter
in his [1763]). However, it was in precisely this type of case that serious prob-
lems with the Principle of Indifference first became evident, with the discovery of
what were called the ‘paradoxes of geometrical probability’, where ‘geometrical’

2Laplace of course enunciated in effect just this rule when he defined the probability of an event to
be the number of cases favourable to the event divided by the number of all possible cases, where these
cases are ‘equally possible’. The proviso has been much commented on, but in the semantic context its
meaning is clear enough: that is certainly how Bolzano and the German school understood it later.
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was the traditional word referring to the real-number continuum, or some compact
subset thereof (the best-known of these ‘paradoxes’ is Bertrand’s chord problem;
see [Kac and Ulam, 1968, pp. 37-39]). This underlying problem is that how the
elementary possibilities are conceived is not absolute but relative to some concep-
tual frame — in effect a language — and depending on how this is chosen the
probability-values will themselves vary.

The mathematical subtleties of continuous possibility spaces rather conceal this
point by suggesting that it is only in such spaces that real problems arise (still
unfortunately a common point of view), so here is a very elementary example
which shows that the problem lies right at the heart of the idea of taking Laplacean
ratios to compute probabilities. Consider two simple first-order languages with
identity and a one-place predicate symbol @, and no other relation or function
symbols. Language 1 has no individual names (constants), and language 2 has two
individual names a, b. In both languages there are identical sentences

A: Something has the property Q
B: There are exactly 2 individuals.

There are only three models of B in language 1 distinguishable up to isomorphism:
one containing no, one containing one and one containing two instances of ). Two
of these satisfy A. In language 2, on the other hand, the fact that the individuals
can be distinguished by constants means that there are more than three distinct
models of B: allowing for the possibility that the constants might name the same
individual there are eight, six of which satisfy A. Using the Laplacean definition
of P(A|B) above we therefore get different answers for the value of P(A|B) de-
pending on which language we use. In language 1 the value is 2/3 and in Language
2 it is 3/4 (cf. Maxwell-Boltzmann vs. Bose—Einstein statistics). Relative to each
language the models are of course all ‘equally possible’.

To sum up: the ‘equal possibilities’ of the Principle of Indifference are equal
relative to some conceptual frame, or language. This can in general be chosen in
different ways and, depending on the choice, the ratios of numbers of favourable
to possible cases for the same event or proposition may vary — where they can be
computed at all. Moreover, not only does there seem to be no non-arbitrary way
of determining the ‘correct’ language, or even being able to assign any meaning
to the notion of a correct language, but in continuous spaces entirely equivalent
frames will exist, related by one-to-one bicontinuous transformations, which will
generate different probabilities.

This intractable knot was eventually untied, or rather cut, only in the last cen-
tury, in the move from objectively to subjectively measured uncertainty, for with
that move was jettisoned the Principle of Indifference, as inappropriate in a theory
merely of consistent degrees of belief. Unfortunately there was no further system-
atic development of the idea that the probability axioms are no more than con-
sistency constraints, at any rate within an explicitly logical setting: Ramsey went
on to pioneer the development of subjective probability as a subtheory of utility



140 COLIN HOWSON

theory (we shall see why shortly), and de Finetti employed the idea of penalties
like Dutch Books to generate the probability laws. De Finetti’s Dutch Book argu-
ment and its extension to scoring rules generally also lead in the wrong direction,
of financial prudence in unrealistic circumstances (you always agree to take either
side of a bet with any specified stake at your personal betting quotient). So despite
its promising starting idea, from a strictly logical point of view Ramsey’s and de
Finetti’s work represented a dead end. In what follows I propose to go back to the
beginning, and combine the intuitions of Leibniz and J. Bernoulli with the con-
ceptual apparatus of modern logic. We shall then get a ‘rational reconstruction’ of
history closer to their intentions than to the actual course of events.

1 DEGREE OF BELIEF

There is a long tradition of informally expressing one’s uncertainty about a propo-
sition A in the odds which one takes to reflect the currently best estimate of the
chances for and against A’s being true. Mathematically, odds are a short step from
probabilities, or at any rate the probability scale of the unit interval. The step
is taken by normalising the odds, by the rule p = odds/(1+odds). p is called the
betting quotient associated with those odds. The p-scale has the advantage as an
uncertainty measure that it is both bounded and symmetrical about even-money
odds (unlike the odds scale itself where the even-odds point, unity, is close to one
end of the scale (0) and infinitely far from the other). Since the seventeeth century
betting quotients as the measure of uncertainty have been called probabilities, and
for the time being I shall do so myself (I am quite aware that they have not yet
been shown to be probabilities in the technical sense: that will come later). Note
that the inverse transformation gives odds = p/(1 — p).

To determine how such probabilities should be evaluated in specific cases was
the function of the Principle of Indifference, a function which, as we have seen,
it was unable to discharge consistently. However, abandoning the Principle, as
Ramsey saw, seems to leave behind only beliefs about chances. -This appears to
signal a move into mathematical psychology, and particularly into measurement
theory to develop techniques for measuring partial belief. Such at any rate was
the programme inaugurated and partly carried out by Ramsey in his pioneering
study ‘Truth and Probability’ [1931]. According to Ramsey the empirical data of
partial belief are behaviourally-expressed preferences for rewards which depend
on the outcomes of uncertain events: for example, in bets. Though Ramsey’s idea
seems to have a scope far beyond ordinary betting, as he pointed out we can always
think in a general context of bets not just against human opponents but also against
Nature. But preferences among bets will normally depend not only on the odds but
also on the size of the stake: for large stakes there will be a natural disinclination
to risk a substantial proportion of one’s fortune, while for very small ones the odds
will not matter overmuch. The only answer to this problem, Ramsey believed, was
to give up the idea that odds, at any rate money odds, could measure uncertainty,
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and invoke instead a very general theory of rationally contrained preference: in
other words, axiomatic utility theory.

But invoking the elaborate apparatus of contemporary utility theory, with its
own more or less serious problems, seems like taking a hammer — and a hammer
of dubious integrity and strength — to crack a nut. Why not simply express your
beliefs by reporting the probabilities you feel justified by your current information,
in the traditional way? The answer usually given is that to do so begs questions that
only full-blown utility theory can answer. These relate to what these probabilities
actually mean. They are odds, or normalised odds, so presumably they should
indicate some property of bets at those odds. For example, I would be taken to
imply that in a bet on A at any other odds than p/(1 —p), where p is my probability
of A, I think one side of that bet would be positively disadvantaged, given what
I know about A and the sorts of things that I believe make A more likely to be
true than false — or not as the case may be. Thus my ‘personal probability’ (that
terminology is due to Savage) determines what I believe to the fair odds on A: i.e.
those odds which I believe give neither side an advantage calculable on the basis
of my existing empirical knowledge. This is where the objections start.

The first is that your assessment of which odds, or betting quotients, do or do
not confer advantage is a judgment which cannot be divorced from considerations
of your own — hypothetical or actual — gain or loss and how you value these;

for to ask which of two “equal” betters ask has the advantage is to ask
which of them has the preferable alternative. [Savage, 1954, p. 63]

Granted that, we seem after all ineluctably faced with the task of developing a the-
ory of uncertainty as part of a more general theory of preference, i.e. utility theory:
precisely what it was thought could be avoided. But should we grant it? One hes-
itates to dismiss summarily a considered claim of someone with the authority of
Savage, but nonetheless it simply is not true. Here is a simple counterexample (due
in essence to [Hellman, 1997, p. 195]): imagine the bettors to be coprophiliacs and
the stakes measures of manure. One’s own preferences are irrelevant to judging
fairness. They have only seemed relevant because gambles are traditionally paid
in money and money is a universal medium of value.

Nevertheless, a Savagean objector might continue, to compute advantage you
still need to know how the bettors themselves evaluate the payoffs, (a) in isolation
and (b) in combination with what are perceived by those parties to be the chances
of the payoffs; and both (a) and (b) may vary depending on the individual. For
example, one party may be risk-averse and the other risk-prone, and a fair bet
between such antagonists will be quite different from a fair bet between two risk-
neutral ones. The answer to this is that the concept of advantage here is that of
bias: on such a criterion a bet is fair simply if the money odds match what are
perceived to be the fair odds, whatever the beliefs or values of the bettors. This
is easily seen to imply an expected value criterion. For suppose R and @ are the
sums of money staked, and that the odds measure of your uncertainty is p : (1—p).
The money odds R : Q match your fair odds just in case pQ = (1 — p)R, i.e.



142 COLIN HOWSON

1) pQ-(1-pR=0

tells us that the bet is fair just when what is formally an expected value is equal
to 0.

Now things do not look at all promising, however, for (1) seems to lead imme-
diately to the notorious St Petersburg Problem. For those unfamiliar with it, this
involves a denumerably infinite set of bets where a fair coin is repeatedly tossed
and the bettor pays 1 ducat to receive 2™ ducats if the nth toss is the first to land
heads, n = 1,2,.... Given no other information, the coin’s assumed equal ten-
dency to land heads or tails will presumably determine the fair odds. In that case
the associated probability of getting the first head at the nth toss is 27", and the
expected value of each bet is clearly 0. Yet everyone intuitively feels that no bet-
tor would be wise in accepting even a large finite number of these bets, let alone
all of them — which would of course mean staking an infinite sum of money.
The inequity of such bets, according to practically all commentators from Daniel
Bernoulli onwards, is due to the diminishing marginal utility of money, and in
particular the inequality in value between losing and gaining the same sum: the
loss outweighs the gain, the more noticeably the larger the sum involved. In the
St Petersburg game you are extremely likely to lose most of your 100 ducats if
you accept the first 100 of the bets, a considerable sum to lose on a trifle. Your
opponent could even less afford to pay out if the 100th bet won. Either way you
would be silly to accept the bets even though they are fair by the criterion of money
expectation. Nowadays it is taken for granted that the only solution to the prob-
lem is to use a utility function which is not only concave (like Daniel Bernoulli’s
logarithmic function) but also bounded above (unlike the logarithm).

I do not think we should worry too much about the St Petersburg Problem, for it
begs a question in its turn, namely that a bet cannot be fair which it would be highly
imprudent for one side to accept. But this is exactly what is being questioned, and
is I think just false. A contract between a prince and a pauper is not unfair just
because one can pay their debt easily and the other cannot. That is to confuse two
senses of fairness: as lack of bias (the sense intended here), in which payoffs are
balanced against probabilties according to (1), and as lack of differential impact
those payoffs will have taking into consideration the wealth of the players. And
indeed these quite distinct ideas have become confused in the Bayesian literature,
to the extent that probability has become almost uniformly regarded as necessarily
a subtheory of a theory of prudent behaviour.

The idea that the expected money-gain principle was vulnerable to the St Peters-
burg Problem was already challenged over two centuries ago by Condorcet, who
pointed out that in repeated bets at odds 2" — 1 : 1 on heads landing first on the
nth toss against, the average gain converges in probability to the expected value,
i.e. 0, while, to quote Todhunter reporting Condorcet, “if any other ratio of stakes
be adopted a proportional advantage is given to one of the players” [Todhunter,
18653, pp. 392-393]. Of course, this argument relies on (a) the full apparatus of
probability theory (the quick modern proof would use Chebychev’s Inequality) and
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(b) assuming that the trials are uncorrelated with constant probability, neither of
which assumption is appropriate here. But one doesn’t need all that anyway: the
moments equation (1) itself is a sufficient answer.

To sum up: the agent’s probability is the odds, or the betting quotient, they
currently believe fair, with the sense of ‘fair’ that there is no calculable advantage
to either side of a bet at those odds. Despite opposing the widely accepted view that
subjective probability can be coherently developed only within a theory of utility,
this view is, I believe, quite unexceptionable, and certainly not vulnerable to what
are usually taken to be decisive objections to it. Not only is it unexceptionable: it
will turn out to deliver the probability axioms in a way that is both elegant and fully
consonant with the idea that they are nothing less than conditions of consistency,
and a complete set of such conditions at that.

2 CONSISTENCY

Now we can move on to the main theme of this paper. Ramsey claimed that the
laws of probability are, with the probability function interpreted as degree of be-
lief, laws of consistency and so of the species of logic. Unfortunately, as we saw,
Ramsey then proceeded to divert the theory into the alien path of utility, where
‘consistent” meant something like ‘rational’. But rationality has nothing essen-
tially to do with logic, except at the limits. Can we give the idea of consistent
assignments of fair betting quotients an authentically logical meaning? The an-
swer is that we can. We proceed in easy stages. A traditional sense of consistency
for assignments of numbers is equation-consistency, or solvability. A set of equa-
tions is consistent if there is at least one single-valued assignment of values to
its variables. The variables evaluated in terms of betting quotients are proposi-
tions. Correspondingly, we can say that an assignment of fair betting quotients is
consistent just in case it can be solved in a analogous sense, the sense of being
extendable to a single-valued assignment to all the propositions in the language
determined by them (this is the notion of consistency Paris appeals to in a recent
work on the mathematical analysis of uncertainty [Paris, 1994, p. 6]). But what,
it might be asked, has the notion of consistency as solvability to do with logical
consistency? Everything, it turns out. For deductive consistency itself is noth-
ing but solvability. To see why, it will help to look at deductive consistency in a
slightly different sort of way, though one still equivalent to the standard account,
as a property not directly of sets of sentences but of truth-value assignments.
According to the standard (classical) Tarskian truth-definition for a first or
higher-order language conjunctions, disjunctions and negations are homomorphi-
cally mapped onto a Boolean algebra of two truth-values, {T, F'}, or {1,0} or
however these elements are to be signified (here 7" or 1 signifies ‘true’ and F' or
0 signifies ‘false’). Now consider any attribution of truth-values to some set X
of sentences of L, i.e. any function from ¥ to truth-values. We can say that this
assignment is consistent if it is capable of being extended to a function from the
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entire set of sentences of L to truth-values which satisfies those homomorphism
constraints. For propositional languages the language of equation-solvability is
sometimes explictly used: formulas can be regarded as representing boolean poly-
nomial equations [Halmos, 1963, p. 8] in the algebra of two truth-values, and sets
of them are consistent just in case they have a simultaneous solution.

The theory of ‘signed’ semantic tableaux or trees is a syntax perfectly adapted
to seeing whether such equations are soluble and if so, finding all the solutions to
them. (‘Signing’ a tableau just means appending Ts and Fs to the constituent sen-
tences. The classic treatment is Smullyan [1968, pp. 15-30], a simplified account
is in [Howson, 1997b].) Here is a very simple example:

AT
A BT
B F

The tree rule for [A — B T is the binary branching

/\

F A BT

Appending the branches beneath the initial signed sentences results in a closed
tree, i.e. one on each of whose branches occurs a sentence to which is attached
both a T and an F. A soundness and completeness theorem for trees [Howson,
1997b, pp. 107-111] tells us that any such tree closes if and only if the initial
assignment of values to the three sentences A, A — B and B is inconsistent, i.e.
unsolvable over L subject to the constraints of the general truth-definition.

To sum up: in deductive logic (semantic) consistency can be equivalently de-
fined in the equational sense of a truth-value assignment being solvable, i.e. ex-
tendable to a valuation over all sentences of L satisfying the general rules gov-
erning truth-valuations. By a natural extension of the more familiar concept we
can call such an extension a model of the initial assignment. Note that this sense
of consistency does not pick out a different concept from the more usual one of a
property of sets of sentences. Indeed, the two are essentially equivalent, as can be
seen by noting that an assignment of truth-values to a set 3 of sentences is consis-
tent in the solvability sense above just in case the set obtained from 3 by negating
each sentence in X assigned F is consistent in the standard (semantic) sense.

We have become accustomed to understand by consistency deductive consis-
tency and thereby something that exists, so to speak, only in a truth-centred en-
vironment. That this is not necessarily the case is now clear, for deductive con-
sistency is seen to be merely an application of a much more general (and older)
idea of consistency as solvability, having nothing necessarily to do with truth at
all, but merely with assignments of values, not necessarily and indeed not usually
truth-values, to variables in such a way that does not result in overdetermination.

THE LOGIC OF BAYESIAN PROBABILITY 145

What deductive and probabilistic consistency do have in common however is
that the variables in question are propositional, and to proceed further we need
to specify the language relative to which an assignment of fair betting quotients
is solvable (if it is), subject to the appropriate constraints. For the sake of defini-
tieness let us start, as in deductive logic, with a language relative to which the class
of propositions will be determined. In fact, we can employ just the same sort of
language, a first order language. Let L be one such, without identity. Let (2 = the
class of structures & interpreting the extralogical vocabulary of L. For any sen-
tence A of L let Mod(A) = {S : Ais true in §}. Let F = {Mod(A): A a sentence
of L}. Following Carnap [1971, pp. 35-37] F is the set of propositions of L. Note
that F' is a Boolean algebra isomorphic to the Lindenbaum sentence algebra of L
[Paris, 1994, p. 34]. In fact, it will be better to work in a rather more extensive class
of propositions, because F' as it stands represents merely the propositions express-
ible by single sentences of L. But it is well-known that the mathematical theories
incorporated in any minimally acceptable theory of physics, for example, are not
expressible by single sentences of a first order language: they are not finitely ax-
jomatisable (even the simplest of all mathematical theories, the theory of identity
investigated by Euclid over 2000 years ago, is not finitely axiomatisable). The
customary closing off of F' under denumerably infinite unions (disjunctions) and
intersections (conjunctions), generating the Borel field B(F"), (more than) allows
such theories to be treated on a par with their finitely axiomatisable cousins.

In Q and B(F) we have two of the three ingredients of what mathematicians
call a probability space. The third is a probability function defined on B(F).
Finding this will be the next task (in what follows I shall use 4, B,C, ... now
to denote members of B(F)). The first step on the way is to determine the ap-
propriate constraints on solutions of assignments of fair betting quotients. These
will function like the purely general rules of truth in classical truth-definitions, as
analytic properties of truth. In the context of fair betting quotients the constraints
should presumably be analytic of the notion of fairness as applied to bets. At this
point it is helpful to transform the payoff table

A

T Q

F —-R
into the well-known (betting-quotient, stake) ‘coordinates’ introduced by de Finetti
in his seminal paper [1964). The stake S is R + Q and the betting quotient p* is
of course just R/ S, and the table above becomes

A
T S(1-p")
F —p*S

Where I4 is the indicator function of A, the bet can now be represented as a
random quantity S(I4 — p*), and the equation (1) now transforms to

(1) pS(1-p*) —p*S(1—-p) =0
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where p is your fair betting quotient. Clearly, the left hand side is equal to O just
when p = p*, which is merely a different way of stating that a fair bet is one in
which your estimate of the fair odds is identical with the money odds. Besides bets
like the above there are also so-called conditional bets, i.e. bets on a proposition
A which require the truth of some proposition B for the bet to go ahead: if B is
false the bet on A is annulled. The bet is called a conditional bet on A given B. A
betting quotient on A in a conditional bet is called a conditional betting quotient.
A conditional bet on A given B with stake S and conditional betting quotient p
clearly has the form IgS(I4 — p). If your uncertainty about A is registered by
your personal fair betting quotient on A then your uncertainty, your conditional
uncertainty, on A on the supposition that B is true will plausibly be given by your
conditional fair betting quotient on A given B.

Let (F') be the set of formal constraints other than 0 < p < 1 which fair betting
quotients, including conditional fair betting quotients, should in general satisfy.
This general content is contained in the claim that a fair bet is unbiased given the
agent’s own beliefs. These of course are unspecified, varying as they do from
individual to individual. We can quickly infer

(a) If p is the fair betting quotient on A, and A is a logical truth, then p = 1;
if A is a logical falseshood p = 0. Thus logical truth, logical falsehood
and entailment relations correspond to the extreme values of fair betting
quotients. Similarly if B entails A then the conditional betting quotient on
A given B should be 1, and 0 if B entails the negation of A.

(b) Fair bets are invariant under change of sign of stake.

The reason for (a) is not difficult to see. If A is a logical truth (i.e. A = Q)and pis
less than 1 then in the bet S(I4 — p) with betting quotient p, I 4 is identically 1 and
so the bet reduces to the positive scalar quantity S(1 —p) received come what may.
Hence the bet is not fair since one side has a manifest advantage. Similar reasoning
shows that if A is a logical falsehood then p must be 0. Similar reasoning accounts
for the conditions relating to entailment. As to (b), (1") shows that the condition
for a bet to be fair is independent both of the magnitude and sign of S.

But there is something else to (F) besides (a) and (b), a natural closure con-
dition which can be stated as follows: if a set of fair bets determines a bet on
a proposition B with betting quotient q then q is the fair betting quotient on B.
What is the justification for this apart from ‘naturalness’? It is well-known by pro-
fessional bookmakers that certain combinations of bets amount to a bet on some
other event, inducing a corresponding relationship between the betting quotients.
For example, if A and B are mutually inconsistent then simultaneous bets at the
same stake are extensionally the same as a bet on A V B with that stake, and
if p and ¢ are the betting quotients on A and B respectively, we easily see that
S(Ia—p)+S{UIp—q) = S(Iayp —r) if and only if r = p + ¢g. Now add to
this the thesis that if each of a set of bets gives zero advantage then the net ad-
vantage of anybody accepting all of them should also be zero (though this thesis
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is not provable, it seems so fundamentally constitutive of the ordinary notion of a
fair game that we are entitled to adopt it as a desideratum to be satisfied by any
formal explication; and, of course, when it is explicated as zero expected value
within the fully developed mathematical theory we have the elementary theorem
that expectation is a linear functional and hence all expectations, zero or not, add
over sums of random variables). Putting all this together we obtain the closure
principle above.
To proceed further, note that bets obey the following arithmetical conditions:

(i) —S(Ia —p) = S(I-a—(1-p)).
(i) If A&B = L then S(I4 — p) +S(Ip — q) = S(Iavs — (p+9))-

(iif) If {A;} is a denumerable family of propositions in B(F') and A;&A; = L
and p; are corresponding betting quotients and ), p; exists then D S(14; —
pi) = S(Iva; — 2 pi)-

(iv) If p,q > O then there are nonzero numbers S, T, W such that S (IseB —
p) + (-T)(Ip — q) = IgW(Ia — p/q) (T'/S must be equal to p/q). The
right hand side is clearly a conditional bet on A given B with stake W and
betting quotient p/q.

Closure tells us that if the betting quotients on the left hand side are fair then so are
those on the right. The way the betting quotients on the left combine to give those
on the right is, of course, just the way the probability calculus tells us that proba-
bilities combine over compound propositions and for conditional probabilities.

Now for the central definition. Let @ be an assignment of personal fair betting
quotients to a subset X of B(F). By analogy with the deductive case, we shall
say that Q is consistent if it can be extended to a single-valued function on all the
propositions of L satisfying suitable conditions.

The final stage in our investigation is to generate interesting properties of con-
sistency. If we suggestively signify a fair betting quotient on A by P(A) closure
tells us

() P(-A) =1— P(A).
(ii") If A&B = L then P(AV B) = P(A) + P(B).

(iii") If {A;} is a denumerable family of propositions in B(F) and 4;&4; = 1
and 3 P(A;) exists then P(VA;) = ) P(4;).

(iv') If P(A&B) and P(B) > 0 then P(A|B) = P(A&B)/P(B).

It might seem slightly anomalous that in (iv') both P(B) and P(A&B) should be
positive, but it will turn out that only the former condition need be retained. At
any rate, from the equations (i')-(iv') and (F') it is a short and easy step to proving
the following theorem:
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THEOREM 1. An assignment Q) of fair betting quotients (including conditional
fair betting quotients) to a subset X of B(F) is consistent (has a model) if and
only if QQ satisfies the constraints of the countably additive probability calculus;
i.e. if and only if there is a countably additive probability function on B(F') whose
restriction to X is Q.

Proof. The proof of the theorem is straightforward. Necessity is a fairly obvious
inference from the closure property. It is not difficult to see that the condition
that P(A& B) be positive in (iv') can be jettisoned once we can assume invariance
under sign of stake. Also, given finite additivity, the condition in (ii’) that 5~ P(A;)
exists is provable (using the Bolzano—Weierstrass Theorem). For sufficiency, all
we really have to‘do is show that closure follows, but this is easy. For suppose P is
a probability function on B(F') and that X; are bets on a finite or countable set of
propositions A; in which the betting quotients are the corresponding probabilities
P(A;). Suppose also that . X; = S(Ig — q) for some proposition B. The
expected value relative to P of each X; is 0, and since expectations are linear
functionals the expected value of the sum is also 0. Hence the expected value of
S(Ip — g) must be 0 also and so ¢ = P(B). So we have closure. [ ]

I pointed out earlier that there is a soundness and completeness theorem for trees
(signed or unsigned), establishing an extensional equivalence between a semantic
notion of consistency, as a solvable truth-value assignment, and a syntactic notion,
as the openness of a tree from the initial assignment. In the theorem above we
seem therefore to have an analogous soundness and completeness theorem, estab-
lishing an extensional equivalence between a semantic notion of consistency, i.e.
having a model, and a syntactic one, deductive consistency with the probability ax-
ioms when the probability functor P signifies the fair betting quotients in ). The
deductive closure of the rules of the probability calculus is now seen as the com-
plete theory of generally valid probability-assignments, just as the closure of the
logical axioms in a Hilbert-style system is the complete theory of generally valid
assignments of truth. My proposal is to take the theorem above as a soundness and
completeness theorem for a logic of uncertainty, of the sort Leibniz seems to have
had in mind when he called probability ‘a new kind of logic’. To complete the
discussion we must consider briefly what qualifies a discipline for the title ‘logic’.

3 LOGIC (WHATISIT?)

Wilfrid Hodges’s well-known text on elementary deductive logic tells us that
‘Logic is about consistency’ [Hodges, 1974]. This raises a question. Should ‘con-
sistency’ just mean ‘deductive consistency’, or might there be other species of
consistency closely kindred the deductive variety entitling their ambient theories
to the status of logic or logics? It may well be the case that logic is about consis-
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tency without foreclosing the possibility of there being logics other than deductive.
To answer these questions we first need an answer to the question ‘What is logic?’.

My own belief is that there is no fact of the matter about what entitles a theory
of reasoning to logical status, and one has to proceed as one does in extending
common law to new cases, by appeal to precedent and common sense. Here again,
of course, one must be selective, but with modern deductive logic in mind I propose
— hesitantly — the following criteria for a discipline to be a logic:

(a) Its field is statements and relations between them.
(b) It adjudicates a mode of non-domain-specific reasoning in its field.

(c) Ideally it should incorporate a semantic notion of consistency extensionally
equivalent to a syntactic one: it should have a soundness and completeness
theorem. First order logic famously has a soundness and completeness theo-
rem; so of course do many modal systems. Second order logic does not, but
one could argue that that is the exception proving the rule, for it is largely
for this reason that second order logic is generally regarded as not being a
logic.

(a) and (b) are certainly satisfied by Bayesian, i.e. evidential, probability theory:
any factual statement whatever can be in the domain of such a probability func-
tion. An interesting fact implicit in the discussion above is that the the statements
involved here are not tied to any language: a Borel field does not of course have
to be generated by the sets of model-structures of a first, or indeed any, order lan-
guage. It can be completely language-free, and still nevertheless be regarded as a
set of propositions, propositions in the most general sense of a class of subsets of
a possibility-space, closed under the finite and countable Boolean operations. This
creates a great deal of freedom, e.g. to assign probabilities to the measurable sub-
sets of Euclidean n-space, a freedom not available in any of the classical logical
languages..

As to (c), the theorem above establishes an extensional equivalence between a
semantic notion, having a model, and a syntactic one (the probability calculus is a
purely syntactic theory, of a function assigning values to elements of an algebra),
and as such, I have claimed, is in effect a soundness and completeness theorem for
Bayesian logic. The question is whether fulfilling (a)—(c) is sufficient to warrant
the title ‘logic’. It is of course quite impossible in principle to prove this, just as
it is impossible in principle to prove the Church—Turing Thesis that the partial re-
cursive functions exhaust the class of computable (partial) functions. In the latter
case ‘computable function’, and in the former ‘logic’, have no precise mathemat-
ical definition. In addition, new theories of reasoning are increasingly marketed
under the general title ‘logic’ as the information technology revolution gets under
way (whereas even twenty years ago most logic texts were produced in university
philosophy departments, now probably most are produced in computer science de-
partments). Under any reasonable definition of ‘theory of general reasoning’ the
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rules of evidential probability would qualify as such, and hence as logic in this
broad, liberal construal. But what has been shown is that a much tighter criterion,
having an authentic semantics provably equivalent extensionally to an equally au-
thentic syntax, applies to evidential probability in much the same sort of way that it
applies to first order logic. Of course, it is open to anyone to deny that a complete-
ness result is essential to a genuine logic; this is, of course, just what advocates of
second order logic say (assuming that only full models are counted). Be that as it
may, there seems little doubt that the completeness, i.e. axiomatisability, of first
order logic has been a major factor in its widespread acceptance not only as logic
but pretty well as the (classical) logic.

I have made consistency the focus of my discussion. It might well be objected
that central to logic is the idea of consequence, or deduction. In a recent collection
[Gabbay, 1994] dedicated to the discussion of what is to count as logic we find that
this is a view common to almost all the authors. For example, ‘logic is the science
of deduction’ [Hacking, 1994, p. 51; ‘a logical system is a pair (~, S..) where S}
is a proof theory for |~ [}~ is a consequence relation}’. [Gabbay, 1994, p. 181];
‘Logic is concerned with what follows from what i.e. with logical consequence’
[Aczel, 1994, p. 262]; and so on. I think that the reflections above show that this
view, though widespread, is nevertheless incorrect. It arose because traditionally
logic has been about conditions necessary and sufficient for the preservation of just
one of the values in a two-valued system, the truth-value ‘true’. In this sense, and
indeed quite naturally, logic has traditionally been deterministic. It is true that there
have been proposals for various sorts of many-valued logics, discrete and contin-
uous, but even there the tendency has been to retain as far as possible something
like a traditional concept of consequence. Even Adams’s explicitly probabilistic
system does this [Adams, 1998]. 1 believe that it is misguided because it is in ef-
fect a denial of the freedom such a mutli-valued system affords to get away from
what is, I believe, nothing more than an artifact of two-valued systems. Of course,
even in the account proposed here there is a consequence relation, but it is only the
trivial one of deductive consequence from the probability axioms, telling us that
if such and such are the probability-values of a specified set of propositions, then
so and so is the probability of some other proposition. Williamson, discussing
the account I have given above, points out that a relation of probabilistic conse-
quence emerges naturally by analogy with the usual deductive notion of semantic
consequence. A sentence A is a semantic consequence of a set 3 of sentences
iff every model of ¥ is a model of A. This transforms to: an assignment r(A)
is a consequence of an assignment ¢(B ), ..., ¢(By) iff every probability function
extending ¢ also extends r, i.e. iff every model, in the sense I have given above,
of g is a model of r [Williamson, 2001]. But this does not generate any notion
of consequence between A and By, ..., B, themselves. As Williamson notes, it
generates a notion of probabilistic consequence, but only in the deductive sense
above: r(A) is a consequence of ¢(Bi),...,q(By) iff P(A) = ¢(A) follows
deductively from the probability axioms together with the ‘assumption formulas’
P(B1) = q(B1),.. ., P(Ba) = q(By).
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Contemporary discussions of the relation between probability and formal de-
ductive logic take a quite different approach to the one I regard as implicit in the
theorem above. Some, e.g. [Gaifman, 1964; Scott and Krauss, 1970], take the log-
ical aspect of probability to be exhausted by defining a probability function on the
sentences of a suitable formal language, either a standard first order language or
an infinitary one (as with Scott and Krauss), and showing how standard measure-
theoretic arguments have to be correspondingly modified, in particular the exten-
sion theorem that states that a countably additive probability function on a field of
sets has a unique countably additive extension on the Borel closure [Kolmogorov,
1956] p. 17). Gaifman provides an analogue of this for finitely additive probability
functions defined on the class of sentences of a first order language with equality,
showing that if a condition that has consequently come to be known as the Gaif-
man condition is satisfied then there is a unique extension from the quantifier-free
sentences to all the sentences of the language (the Gaifman condition states that
the supremum of the probabilities of all the disjunctions of instances of a formula
is equal to the probability of its existential quantification; in terms of the Linden-
baum algebra the Gaifman condition is that probabilities commute with suprema).

Others, like Fagin and Halpern [1988], and in a different way Heifetz and Mon-
gin [forthcoming], incorporate probability into the syntax of a formal language.
‘Pulling down’ probability into the object language is of course very much in the
spirit of modal logic, and indeed Heifetz and Mongin introduce what they call a
modal operator, ‘the probability is at least ¢ that .., for all rational « in [0,1],
which they interpret according to a generalisation of Kripke semantics incorporat-
ing a probability distribution over a class of possible worlds. What distinguishes
my own account most of all from the modal one(s) and the others that I have
mentioned is that they take the probability axioms as pretty much given: in Gaif-
man and Scott and Krauss probability is just a weakening of the usual two-valued
semantic valuation, while in Heifetz and Mongin the axioms are, as in Savage,
derivative from a set of rationality constraints over preferences. I believe I have
shown in the foregoing that the probability axioms for epistemic probability are
naturally, if not inescapably, interpreted as being of the same general species of
consistency constraint as the rules of deductive logic itself, and to that extent in-
trinsically logical in nature.

We now move to consider some collateral benefits accruing from construing
the (epistemic) probability calculus as a species of logical axioms. Where a title,
like “logic’, is already uncontroversially bestowed elsewhere, discharging some
genuine explanatory function should be a condition of its extension to a putative
new case. As we shall see below, there are in addition to (a)—(c) above other
interesting points of contact, or near-contact, with classical deductive logic, and a
logical understanding of the rules of probability will, I hope, be seen to bring with
it a considerable explanatory bonus.

The following topics in Bayesian probability are all regarded as problematic
to some extent or other: countable additivity; strict coherence versus coherence;
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rationality; completeness; conditionalisation; sharp versus fuzzy or interval-valued
probability; inductive inference; penalties for infringing the rules. The logical view
at the least usefully illuminates these and at best solves them. I shall deal with them
in turn.

3.1 Countable Additivity

There has been a good deal of controversy concerning the status of the principle
of countable additivity within the theory of epistemic probability. Most workers
in the field, including, famously, de Finetti himself, reject it, while a much smaller
number accept it. I do not think that it is necessary to go into the details of the
protagonists’ arguments. The theorem above shows that it must be adopted within
any adequate view of the rules of probability as consistency constraints. The fact
is that if we wish to assign probabilities as widely as possible then consistency
in their assignment over compound propositions can then be guaranteed only by
adding countable additivity to the axioms.

3.2 Rationality

I started out by remarking that the recent history of subjective probability has
tended to neglect the logical aspect identified by Leibniz, favouring instead a ra-
tionality interpretation of the constraints as prudential criteria of one type or an-
other. The trouble with adopting this line is that it is very difficult to demonstrate
in any uncontroversial and non-question-begging way that violation of any of the
constraints is positively irrational. Take the requirement of transitivity for pref-
erences, for example: it is not evident that certain types of intransitive preference
are necessarily irrational, especially when it is considered that the comparisons are
always pairwise (for a counterexample see Hughes [1981]). The logical view, on
the other hand, need not in principle be troubled by links with rationality of only
doubtful strength, since logic is not about rational belief or action as such. Thus,
deductive logic is about the conditions which sets of sentences must satisfy to be
capable of being simultaneously true (deductive consistency), and the conditions
in which the simultaneous truth of some set of sentences necessitates the truth of
some given sentence (deductive consequence): in other words, it specifies the con-
ditions regulating what might be called consistent truth-value assignments. This
objectivism is nicely paralleled in the interpretation of the probability axioms as
the conditions regulating the assignment of consistent fair betting quotients.

3.3 Completeness

Under the aspect of logic the probability axioms are as they stand complete. Hence
any extension of them — as in principles for determining ‘objective’ prior proba-
bilities — goes beyond pure logic. This should come as something of a relief: the
principles canvassed at one time or another for determining ‘objective’ priors have
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been the Principle of Indifference, symmetry principles including principles of
invariance under various groups of transformations, simplicity, maximum entropy
and many others. All these ideas have turned out to be more or less problematic: at
one extreme inconsistent, at the other, empty. It is nice not to have to recommend
any.

3.4 Coherence versus Strict Coherence

A hitherto puzzling qustion posed first by Shimony [1955] and then repeated by
Carnap [1971, pp. 111-114] is easily answered if we accept that the probability ax-
ioms are laws of consistency. Consider a set of bets on n propositions Ay, ..., An
with corresponding betting quotients p;. The classic Dutch Book argument shows
that a necessary and sufficient condition for there being, for every set of stakes
S;, a distribution of truth-values over the A; such that for that distribution there
is a non-negative gain to the bettor (or loss: reverse the signs of the stakes), is
obedience to the probability axioms. However, if we substitute ‘positive’ for ‘non-
negative’ we also get an interesting result: the necessary and sufficient condition
now becomes that the probability function is in addition strictly positive, i.e. it
takes the value O only on logical falsehoods. Which of these two Dutch Book ar-
guments should we take to be the truly normative one: that we should always have
the possibility of a positive gain, or that we should always have the possibility of a
non-negative gain? It might seem that the second is the more worthwhile objective:
what is the point of going to a lot of trouble computing and checking probability
values just to break even? On the other hand, strictly positive probability functions
are very restrictive. There can be no continuous distributions, for example, so a
whole swathe of standard statistics seems to go out of the window. There does
not seem to be a determinately correct or incorrect answer to the question of what
to do, which is why it is a relief to learn that the problem is purely an artifact of
the classic Dutch Book argument. Give up the idea that the probability laws are
justified in those terms and the problem vanishes. Indeed, we now have a decisive
objection to specifying any conditions additional to the probability axioms: the
laws of probability as they stand are complete.

3.5 Unsharp Probabilities

We seldom if ever have personal probabilities, defined by Bayes’ procedure of
evaluating uncertain options, which can be expressed by an exact real number.
My value for the probability that it will rain some time today is rather vague, and
the value 0.7, say, is no more than a very rough approximation. In the standard
Bayesian model the probability function takes real-number values. But if we are
trying to use the model to understand agents’ actual cognitive decisions it would
seem useful if not mandatory to assume that they have more or less diffuse proba-
bilities — because they mostly if not invariably do in the real world.
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If I am correct then probabilistic and deductive models of reasoning are in-
timately related, suggesting that considerations which prove illuminating in one
can be profitably transferred, mutatis mutandis, to the other. So ask: what cor-
responds in deductive models to consistent probability-values? Answer: truth-
values. Well, deductive models, or at any rate the standard ones, equally fail to
be realistic through incorporating ‘sharp’ truth-values, or what comes to the same
thing, predicates having sharp ‘yes’/’no’ boundaries. Thus, it is assumed in stan-
dard deductive logic that for each predicate @) and individual @ in the domain, a
definitely has Q or it definitely does not. An equivalent way of stating the assump-
tion is in terms of characteristic functions: the characteristic function of @ is a
function fo on the domain of individuals such that for each a, fo(a) =1 (ie. a
has Q) or foa) = 0 (a does not have Q). No intermediate values are permitted.
And this apparatus is used to model reasoning in natural languages which by na-
ture are highly unsharp, except in the very special circumstances when technical
vocabularies are employed. There are actually good functional reasons why natural
predicates are not sharp: their flexibility in extending beyond know cases is an in-
dispensable feature of the adaptive success of natural languages. Not surprisingly
the modelling of these languages by artificially sharp ones results in ‘paradoxes’
of the Sorites type (whose classic exemplar is the Paradox of the Heap).

Such unpalatable results have prompted the investigation of more accurate meth-
ods of modelling informal deductive reasoning by means of ‘vague’ predicates,
and in particular the use of so-called ‘fuzzy’ ones, where {0,1}-valued charac-
teristic functions are replaced by continuous functions, with appropriate rules for
their use. The analogue for blunting ‘sharp’ probability values is to replace them
with unsharp, interval-valued ones, and the theory of these is well-understood (see
[Walley, 19911). But ‘sharp’ probability models find their justification in inves-
tigations of how evidence, in the form of reports of observations, should affect
estimates of the credibility of hypotheses. It is quite difficult to answer this and
related questions, e.g. how sensitive y is to  where the data are particularly nu-
merous or varied or both, without using a theory that can say things like *Suppose
the prior value of the probability is z’, and then use the machinery of the point-
valued probability calculus (in particular Bayes’ Theorem) to calculate that the
posterior value is y. So we need a fairly strong theory which will tell us things
like this; and in the standard mathematical theory of probability we have a very
rich theory indeed. At the same time, the model is not too distant from reality; it
is quite possible to regard it as a not-unreasonable approximation in many appli-
cations, for example where the results obtained are robust across a considerable
range of variation in the probability parameters. Many of the limiting theorems in
particular have this property.

Similar sorts of considerations apply to the usual formal models of deductive
reasoning. There are non-sharp models, but it is partly the sharpness itself of the
more familiar structures that explains why they still dominate logical investiga-
tions: nearly all the deep results of modern logic, like the Completeness Theorem
for the various formulations of first order logic, and the limitative theorems of
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Church, Godel, Tarski etc., are derived within ‘sharp’ models. Much more could
be written on this subject, but space and time are limited and enough has, I hope,
now been said to convey why sharp models are not the unacceptable departures
from a messier reality that at first sight they might seem to be.

3.6 Conditionalisation

If the rules of the probability calculus are a complete set of consistency constraints,
what is the status of conditionalisation, which is not one of them, though it is
standardly regarded as a ‘core’ Bayesian principle? Recall that conditionalisation
is the rule that

P(B|A)=r P'(4)=1
P'(B)=r

where ‘P'(A) = 1’ signifies an exogenous ‘learning’ of A; P is your probability
function up to that point, and P’ after. There is a well-known Dutch Book argu-
ment for this rule due to David Lewis (reported in [Teller, 1973]). I have given
detailed reasons elsewhere [Howson and Urbach, 1993, Ch. 6] why I believe any
Dutch Book argument in the ‘dynamic’ context to be radically unsound and I shall
not repeat them all here. What I will do is show how consideration of a correspond-
ing, obviously unsound, deductive analogue enables us to translate back and see
why the probabilistic dynamic rule should in principle be unsound too. Consider
first a possibly slightly unfamiliar — though sound — version of modus ponens,
where v is a truth-valuation and 7 = 1 (true) or O (false):

vA—>B)=r v(4) =1
u(B)=r .

But now suppose v and w are distinct and consider
vA—-B)=r w(A) =1
w(B)=r '

This ‘dynamic’ version of (2), where v and w represent earlier and later valuations,
is clearly invalid. Indeed, suppose A says that B is false, i.e. A = —B, and you
now (v) accept =B — B (i.e. v(—B — B) = 1): it means accepting B), but later
(w) accept —B (i.e. w(~B) = 1). If you try to ‘conditionalise’ and infer B (i.e.
w(B) = 1) you will obviously be inconsistent.

Here is a probabilistic analogue of that counterexample. Let A say not that B
is false but that B is going to be less than 100% probable: A = “P/(B) < 17,
where P’ is your probability function at some specified future time ¢ (e.g. you
are imagining that you will be visited by Descartes’s demon). Further, suppose
P(B) = 1, and suppose P(A) > 0. If you are a consistent probablistic reasoner
P(B|A) = 1. But suppose at ¢ it is true that P'(B) < 1, and you realise this
by introspection (i.e. P'(A) = 1). If you try to conditionalise on A and infer
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P'(B) = P(B|A) you will be inconsistent. In the deductive ‘dynamic’ modus
ponens, only if v(A — B) = w(A — B) can you validly pass from w(4) =1
andv(A — B) =rtow(B)=r(r=_0or 1) ie.

w(A = B) =v(A = B) w(d) =1
w(B) = v(A = B)

©)

which is just a substitution instance of (2). This suggests the analogous rule
P'(B|A) = P(B|A) P'(B)=1

@ :
P'(B) = P(B|A)

Indeed this rule is valid, but you don’t need a new rule to tell you so: it already
follows from the probability calculus! In other words, conditionalisation is only
conditionally valid, and the conditions for validity are already supplied by the
probability calculus. Similar considerations apply to ‘probability kinematics’.

The rather striking similarities between (3) and (4) above suggest a further point
of contact between Bayesian probability and deductive logic. Do not these rules
imply that P(B|A) is the probability of a type of sentential conditional? But, as
is well-known, this question seemed to have been answered firmly in the negative
by David Lewis with his so-called ‘triviality theorem’ [Lewis, 1973]. In spite of
the apparent finality of the answer there have been attempts to bypass it via var-
ious types of non-Boolean propositional logics incorporating a conditional B=>A
satisfying the so-called Adams Principle P(B|A) = P(A = B) (from [Adams,
1975)). Long before Lewis’s result de Finetti had suggested a non-Boolean, three-
valued logic of conditionals [de Finetti, 1964, Section 1] satisfying that condition,
with values ‘true’, ‘false’and ‘void’, where a conditional is ‘void’ if the antecedent
is false (cf. called-off bets). This is not the place for a discussion of these at-
tempts and I refer the reader to Milne [1997] for a relatively sympathetic account
of this and other theories of non-Boolean conditionals, and to Howson [1997a] for
a somewhat less sympathetic discussion.

3.7 Inductive Inference

This is a vast topic and I can only sketch here the account I have given at length
elsewhere [Howson, 2000, Ch. 8). The logical view of the principles of subjective
probability exhibits an extension of deductive logic which still manages to remain
non-ampliative. It therefore also respects Hume’s argument that there is no sound
inductive argument from experiential data that does not incorporate an inductive
premise, and it also tells us what the inductive premise will look like: it will be a
probability assignment that is not deducible from the probability axioms. Far from
vitiating Bayesian methodology I believe this Humean view, which arises naturally
from placing epistemic probability in an explictly logical context, strengthens it
against many of the objections commonly brought against it (see Howson loc.
cit.).
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3.8 Sanctions

A logical view of the probability axioms is all very well, but what sanction at-
taches to infringing them on this view? Indeed, doesn’t the analogy with deductive
logic break down at precisely this point? There is after all an obvious sanction to
breaking the rules of deductive consistency: what you say cannot be true if it is
inconsistent. Perhaps surprisingly, however, there seems to be as much — or as
little — sanction in both cases. In the probabilistic one there certainly are sanc-
tions: not just the (usually remote) theoretical possibility of being Dutch-Booked
were you to bet indiscriminately at inconsistent betting quotients (note that there
is no presumption in the earlier discussion that you will and certainly not that you
ought to bet at your fair betting quotients, or indeed that you ought to do anything
at all), but those arising in general from accepting fallacious arguments with prob-
abilities: we have only to look at the notorious Harvard Medical School Test to
see what these might be (see [Howson, 2000, pp. 52-54]). Morover, probabilistic
inconsistency is as self-stultifying as deductive: as we saw in the previous chap-
ter, inconsistency means that you differ from yourself in the uncertainty value you
attach to propositions, just as deductive inconsistency means that you differ from
yourself in the truth-values you attach to them.

As to the positive sanctions penalising deductive inconsistency, these on closer
inspection turn out to be less forceful than they initially seemed. Here is Albert
rehearsing them:

Logical [deductive] consistency serves a purpose. Beliefs cannot pos-
sibly be true if they are inconsistent. Thus, if one wants truth, log-
ical consistency is necessary. An analogous argument in favor of
Bayesianism would have to point out some advantage of coherence
unavailable to those relying on non-probabilistic beliefs and deduc-
tive logic alone. Such an argument is missing. [Albert, 2001, p. 366]

The two principal assertions here are both incorrect. Firstly, logical consistency
is not necessary for truth. False statements are well known to have true con-
sequences, lots of them, and inconsistent statements the most of all since every
statement follows from a contradiction. Current science may well be be inconsis-
tent (many distinguished scientists think it js), but it has nevertheless provided a
rich bounty of truths. The benefits of maintaining deductive consistency are more
complex and less direct than is often supposed, but the principal penalty is the
same in both the deductive and the probabilistic case: inconsistency amounts to
evaluating the same proposition in incompatible ways. It is self-stultifying. More
generally, the practical penalties attaching to deductive inconsistency are not ob-
viously greater than those attaching to probabilistic inconsistency. What practical
consequences flow from either will vary with one’s situation.
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4 CONCLUSION

In the foregoing pages I have tried to carry through Leibniz’s programme for un-
derstanding the rules of evidential probability as a species of logic as authentic
as those of deductive logic. In both cases these rules are conditions of solvability
of value-assignments, with similar completeness properties. I have also argued
that this leads to a quite different, and much more coherent and fruitful, view of
Bayesian probability than the usual one which is as a theory of prudential rational-
ity. One thing that Lakatos’s well-known theory of scientific research programme
emphasises is that a programme may be almost written off yet eventually come
back to win the field (see Lakatos [1970]). It is early perhaps to predict that this
will happen with the logical programme, but I hope I have shown that its resources
are more than adequate to the task.
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